TRIANGULARIN, A NEW CHALCONE FROM PITYROGRAMMA TRIANGULARIS

AURA E. STAR*, TOM J. MABRY† and DALE M. SMITH‡

*Biology Department, Trenton State College, Trenton, NJ 08625, U.S.A.; †Department of Botany, University of Texas at Austin, Austin, TX 78712, U.S.A.; †Department of Biological Sciences, University of California, Santa Barbara, CA 93102, U.S.A.

(Received 10 May 1977)

Key Word Index-Pityrogramma triangularis, Adiantaceae: flavonoid exudate; chalcone; flavanone.

Abstract—2',6'-Dihydroxy-4'-methoxy-3'-methylchalcone has been isolated from the exudate farina of the ceroptin chemotype of *Pityrogramma triangularis*. The analogous flavanone was also detected as a minor component in the extract.

INTRODUCTION

Ferns of the genus Pityrogramma exude a colored waxyflavonoid powder primarily on the abaxial side of fronds. Exudate colors which exist in a range of hues: bright white, pale yellow, greenish-yellow, golden-yellow, orange-yellow, orange and pink, often serve as a basis for taxonomic delimitation. To date, ten flavonoids have been identified in the exudates of five species: the flavonols galangin and izalpin from P. chrysoconia [1]; 3,5,7-trihydroxy-4'-methoxyflavone and 3,5-dihydroxy, 7-4'-dimethoxyflavone and pityrogrammin from P. triangularis [2]; rhamnocitrin, genkwanin and 2',6'-dihydroxy-4,4'-dimethoxydihydrochalcone from P. tartarea [3]. This dihydrochalcone as well as 2',6'-dihydroxy-4'-methoxydihydrochalcone were reported from P. chrysophylla var. marginata [4]. The latter is also the major exudate flavonoid of P. calomelanos [3]. A novel chalcone-like compound, ceroptin, was described from P. triangularis [5], and, to date, two chalcones 2',6'dihydroxy-4'-methoxychalcone and 2',6'-dihydroxy-4, 4'-dimethoxychalcone have been reported from the orange exudate of P. chrysophylla var. heyderi [6] and the latter chalcone also from P. calomelanos [7].

In earlier work, we reported the existence of two exudate chemotypes of *Pityrogramma triangularis*, one in which kaempferol methyl ethers are the major components, and the other in which ceroptin is the primary constituent [2]. As part of a continuing study of *Pityrogramma* we report here a new chalcone from the ceroptin exudate chemotype of *P. triangularis*.

RESULTS

Red prisms of the new chalcone crystallized spontaneously from a concentrated methanolic extract which had been washed with hexane and from which the crystalline ceroptin fraction was removed by filtration. These red crystals were identified, as 2',6'-dihydroxy-3'-methyl-4'-methoxychalcone (which we name triangularin) on the basis of UV, NMR, and MS data. The UV spectrum in MeOH supports a chalcone structure for the compound [8]: λ_{max} : 240, 290 and 340 nm. The lack of a shift in Band II in NaOAc indicates that the A-ring 4' position is substituted. A bathochromic shift of Band I in

AlCl₃ relative to the MeOH spectrum of 30 nm (from 342 to 372 nm) suggests a free hydroxyl group at the 6' position in the A-ring.

NMR data establish an unsubstituted B-ring; a multiplet at δ 6.85–7.75 integrating for 7 aromatic or vinyl protons, 5 of which can be assigned to the B-ring and two to the α - and β - protons. One aromatic signal at δ 5.91 can be attributed to a proton at either C-3' or C-5'. The C-methyl group which appears as a singlet at δ 1.96 can also be assigned to either C-3' or C-5'. The methoxyl group at δ 3.77 is assigned to the A-ring 4'-position based upon a shift of 0.37 ppm in benzene relative to the spectrum in CCl₄. Two singlets of about 35% relative intensity adjacent to signals for the methoxyl and C-methyl groups, indicate that in CCl₄ the chalcone exists as a mixture of two isomers, i.e. the cis- and trans-forms of 2',6'-dihydroxy-3'-methyl-4'-methoxychalcone.

A strong molecular ion at m/e 284 confirms the molecular formula of C₁₇H₁₆O₄. That the chalcone contains a 2'-hydroxyl group was confirmed by the fragmentation pattern since 2'-hydroxychalcones can isomerize at high temperature [9] to the flavanone and give flavanone fragment peaks, here found at m/e 180 (65%), 104 (51%),207 (62%), and 152 (69%). Fragment peaks for the chalcone were at m/e 181 (48%), 131 (27%), 153 (37%), 137 (41%) and 283 (73%). Indeed, traces of the flavanone were present in all samples of triangularin, and could be separated by Si gel TLC as 5-hydroxy-6-methyl-7methoxyflavanone, an expected cyclization product from the chalcone. The flavanone which was characterized by UV, and MS may be an artifact of the chalcone isolation procedure or a natural product [5, 7]; we propose that the chalcone is the natural product because the red crystals appeared spontaneously in the extract, but upon standing, particularly in solution, there was a slow conversion to the flavanone.

The demonstration of A-ring C-methylation in triangularin along with the C-methylated ceroptin and pityrogrammin further establishes the biosynthetic differentiation of the ceroptin chemotype from its cogeners which produce other flavonoid methyl ethers.

EXPERIMENTAL

The new chalcone was isolated from the Pityrogramma triangularis exudate deep red crystals from MeOH. R_f 0.80 in

Short Reports 587

CHCl₃-MeOH-MeCOEt (12:2:1) on polyamide TLC; purple color on paper in UV light to purple with UV+NH₃; mp 192-196°. UV spectral data: $\lambda_{\max}^{\text{MeOH}}$; 240s, 290s, 342 nm; $\lambda_{\max}^{\text{NaOMe}}$: 298, 353 nm; $\lambda_{\max}^{\text{NaCAc}}$: 330s, 372 nm; $\lambda_{\max}^{\text{AlCI}_3/\text{HCI}}$: 315s, 366 nm; $\lambda_{\max}^{\text{NaOAc}}$: 290s, 342 nm; $\lambda_{\max}^{\text{NaOAc}}$: 290, 352 nm. The flavanone was separated by Si/gel TLC, C_6H_0 -EtOAc-Me₂CO (8:1:1); R_f 0.86; purple on paper over UV light, remaining purple with NH₃. UV data: $\lambda_{\max}^{\text{MeOH}}$: 290, 340 nm; $\lambda_{\max}^{\text{NaOMe}}$: 293, 355 nm; $\lambda_{\max}^{\text{AlCI}_3/\text{HCI}}$: 225, 314, 385 nm; $\lambda_{\max}^{\text{AlCI}_3/\text{HCI}}$: 225, 314, 385 nm; $\lambda_{\max}^{\text{NaOAc}/\text{H}_3\text{BO}_3}$: 291, 335 nm. MS: $\lambda_{\max}^{\text{MeO}}$ 284 (M+; 100%); $\lambda_{\max}^{\text{MeO}}$ (62%), $\lambda_{\max}^{\text{MeO}}$ 104 (51%) and $\lambda_{\max}^{\text{MeO}}$ 152 (69%).

Acknowledgements—AES acknowledges support by an NSF grant (GY-7173) and Trenton State College for release time. TJM wishes to acknowledge financial support from the Robert A. Welch Foundation (Grant F-130), the National Institutes of Health (Grant HDO 4488) and the National

Science Foundation (Grant DEB 76-09320). The NMR spectra were recorded by Dr. Masayuki Sakakibara.

REFERENCES

- 1. Wollenweber, E. (1972) Phytochemistry 11, 425.
- Star, A. E., Rösler, H., Mabry, T. J. and Smith, D. M. (1975) *Phytochemistry* 14, 2275.
- 3. Star, A. E. and Mabry, T. J. (1971) Phytochemistry 10, 2817.
- 4. Nilsson, M. (1961) Acta Chem. Scand. 15, 154.
- 5. Nilsson, M. (1959) Acta Chem. Scand. 13, 750.
- 6. Nilsson, M. (1961) Acta Chem. Scand. 15, 211.
- 7. Bohm, B. A. (1968) Phytochemistry 7, 1687.
- 8. Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970)

 The Systematic Identification of Flavonoids. Springer-Verlag,
 Heidelberg.
- Itagaki, Y., Kurokawa, T., Sasaki, S., Chang, C-T. and Chen, F.-C. (1966) Bull. Chem. Soc. Japan 39, 538.

Phytochemistry, 1978, Vol 17, pp. 587-588 Pergamon Press Printed in England

DIDYMOCARPIN, A NEW FLAVANONE FROM *DIDYMOCARPUS*PEDICELLATA

PRAKASH C. Bose and Narayan Adityachaudhury

Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswa Vidyalaya, Kalyani, Nadia, West Bengal, India

(Received 2 August 1977)

Key Word Index—Didymocarpus pedicellata: Gesneriaceae; didymocarpin: 7-hydroxy-5,6,8-trimethoxyflavanone.

In continuation of our studies on the genus *Didymocarpus* [1-3], we further examined *D. pedicellata*, which elaborates a number of polymethoxylated chalcones, a flavanone and quinochalcones [4-7]. A new flavanone, didymocarpin, has now been isolated from the leaves of *D. pedicellata*, collected from the Western Himalayan regions [8]. It has been identified as 7-hydroxy-5,6,8-trimethoxyflavanone.

EXPERIMENTAL

The dried powdered leaves of D. pedicellata were successively extracted with petrol (bp 60–80°), C_6H_6 and $CHCl_3$. The C_6H_6 extract on chromatography over Si gel furnished a compound crystallizing from petrol– C_6H_6 as pale yellow needles, mp $103-104^\circ$, $[\alpha]_D-12.8^\circ$ (c=0.7, $CHCl_3$), $C_{18}H_{18}O_6$ (M^+ 330). The colour reaction (+ve Shinoda) coupled with the appearance of a double doublet (C_2 -1H, 5.40 δ , J=4 Hz) and a rough triplet (C_3 -2H, 3.00 δ) in the NMR spectrum confirmed the presence of a flavanone system. Functional group analysis revealed the presence of three OMe groups (3H-singlets at 4.17, 3.97, 3.90 δ), a phenolic OH (1H-singlet at 5.57 δ , exchangeable with D_2O ; γ_{\max}^{KBr} 3430 cm⁻¹) and a conjugated $C=O(\gamma_{\max}^{KBr}$ 1680 cm⁻¹). The IR spectrum disclosed a complex aromatic substitution pattern (1600, 1460, 1430, 1360, 1300, 1240, 1170 cm⁻¹) and an unsubstituted benzene [6] ring (710, 630 cm⁻¹). A 5H-singlet at 7.47 δ indicated the presence of five aromatic protons. The two peaks at m/e 253 (M^+ – 77; M^+ – C_6H_5) and at m/e 226 (M^+ – 104; M^+ – C_6H_5 – $-CH=CH_5$) corresponding to the loss of phenyl and styrene

fragments respectively from the M⁺ ion confirmed that the Bring is unsubstituted. Didymocarpin exhibited two other fragments at m/e 211 (m/e 226–15; m/e 226–Me) and m/e 183 (m/e 211–28; m/e 211–CO). The ready solubility of the flavanone in aq. Na₂CO₃ [9] coupled with the UV spectrum [λ_{\max}^{EOH} 282 (log ε 4.7) am; $\lambda_{\max}^{EOH-0-1(N)NaOH}$ 296 (log ε 4.6) nm] showing a bathochromic shift of 14 nm suggested the presence of an —OH group in the 7-position of didymocarpin. The reduced activity of the 7-OH group towards NaOAc showing no bathochromic shift [$\lambda_{\max}^{EOH-NaOAc}$ 282 nm] of the maximum is presumably due to the presence of two oxygen substituents at 6 and 8 positions [10. 11]. The absence of a shift with AlCl₃ indicates that the 5-OH is methylated.

Acknowledgements—PCB is grateful to CSIR, New Delhi, for the award of a fellowship. The authors are grateful to Dr. B. C. Das, CNRS, Gif-Sur-Yvette, France and Dr. D. N. Roy, University of Toronto, Canada, for spectral measurements.

REFERENCES

- Adityachaudhury, N., Das, A. K., Choudhury, A. and Das Kanungo, P. L. (1976) Phytochemistry 15, 229.
- 2. Adityachaudhury, N. and Das Kanungo, P. L. (1975) Plant Biochem. J. 2, 65.
- 3. Adityachaudhury, N., Das, A. K. and Das Kanungo, P. L. (1976) *Indian J. Chem.* 14B, 909.
- 4. Seshadri, T. R. (1965) J. Indian Chem. Soc. 42, 343.